Proppant Selection
In Unconventional Reservoirs

Terry Palisch
Director of Petroleum Engineering
November 8, 2012
Terry Palisch

Director of Petroleum Engineering
Outline

• Introduction
 – Proppants

• Proppant Selection Drivers
 – Importance of Conductivity

• Field Examples
 – Unconventional Reservoirs

• Summary

Two primary papers are the basis for this talk….

=> SPE 106301 & 160206
The Challenge of Tight / Unconventional Reservoirs

- Extremely low permeability formations

Key technologies driving UCR development

- Drilling and Completion advancements in HZ wells
 - HZ Operations - Perfs, plugs, completion designs
 - Multistage hydraulic fracturing

Do we understand our fractures as well as we understand our completions?
Why is this Important?

• Wellbore Specifications
 – Wellhead, casing, tubing, packers, etc
 – Specify grade, pressure service/rating, fluid service, etc

• Fracture Stimulation
 – What are you specifying for your proppant?
 • i.e. proppant type and size, testing requirements, etc.
The Proppant Conductivity Pyramid

Highest Production, EUR, IRR

High strength (minimizes crush)
Uniform size and shape
(maximizes frac porosity and permeability)
Thermal resistant (durable, minimizes degradation)
Engineered, Manufactured Product

Tier 1 - High Conductivity
Ceramic

Tier 2 - Medium Conductivity
Resin Coated Sand

Tier 3 - Low Conductivity
Sand

Low strength
Irregular size and shape
Naturally Occurring Product

99% of all proppants used today fit somewhere in this pyramid
Proppant Selection...can seem difficult

List not complete. Some names are registered trademarks, some historical

<table>
<thead>
<tr>
<th>Other</th>
<th>Sand</th>
<th>Lightweight Ceramic</th>
<th>Int. Density Ceramic</th>
<th>High Density Ceramic</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiteProp 105, 125, 175</td>
<td>Ottawa, Jordan Badger</td>
<td>CARBOLite</td>
<td>CARBOProp</td>
<td>CARBOHSP Sintered Bauxite</td>
</tr>
<tr>
<td>CARBOTag</td>
<td>Hickory, Brady</td>
<td>ECONOProp</td>
<td>ISP, InterProp</td>
<td>SinterBall</td>
</tr>
<tr>
<td>CARBONRT</td>
<td>Colorado Silica</td>
<td>HYDROProp</td>
<td>SinterLite</td>
<td>UltraProp</td>
</tr>
<tr>
<td>ScaleProp</td>
<td>Arizona</td>
<td>ValueProp</td>
<td>VersaProp</td>
<td></td>
</tr>
<tr>
<td>Oxball, Oxfrac</td>
<td>White/Brown</td>
<td>NapLite</td>
<td>BoroProp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“River” sand</td>
<td>MGLight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ForeProp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With Resins:

- AcFrac CR, PR, Black, Tempered/Super TF
- OptiProp, PowerProp
- Super HS, Prime Plus
- XRTGold

PR = pre-cured
CR = curable
LC = low cost
DC = dual coat

CARBOBond Ceramax E
CARBOBond Ceramax V
CARBOBond Ceramax P
HyperProp

Many resins on any substrate (CARBOBond, Tempered LC, DC, HS, XRT)
Proppant Selection Drivers in Shale Plays

• Availability
• “Bring us what you have”
 – Since 2004, global proppant utilization has increased 15-fold, and is currently estimated at 60-70 billion lbs per year
 – Demand has outstripped the pace of expansion in all Tiers
 • Ceramic Plants, Resin Coating Plants, Sand Mines
 – Driven proppant costs up

• Proppant Quality Can Suffer When Demand is High
 – SPE 84304, 101821, 119242
Quality Control & Assurance

Uncoated Sand
- Strength, Shape
- Sieve Distribution
- Influx of “River” Sand

Resin Coated Sand
- Substrate Quality
- Resin/Coating Technology

Ceramics
- Tight/Broad Sieve
- Raw Material Quality
- Process Controls
- Shape/Strength
- Supply Chain QA

High Quality LWC
Low Quality River Sand
Low Quality IDC
Availability Challenges

• Challenges to Logistics / Distribution
 – Larger volumes per well / pad drilling
 – Tremendous rig counts in a basin (200+)
 • It is estimated that the Eagle Ford alone is using 10-15 billion lbs proppant annually
• Availability

• Fluid system
Fluid System Impacts

- **Fluid Selection**
 - Slickwater systems => 40/70 (& 100 Mesh)
 - Crosslinked (Hybrid) Fluids => 30/50, 20/40 and larger
 - Conductivity needs, rock fabric, cost, etc.
 - Various proppant types and sizes necessary to tailor to each individual application (SPE 115766)
Proppant Selection Drivers in Shale Plays

- Availability
- Fluid system
- Conductivity requirements
Fracture Conductivity

\[c_f = k_f \times w_f \]

How wide is the road and how good is the pavement?
How much Conductivity do I need?

$$c_f = k_f \times w_f$$

Dimensionless Fracture Conductivity (F_{CD}) is a measure of the contrast between the flow capacity of the fracture and the formation.
Common Misperceptions

Misunderstanding the need for conductivity

- “My reservoir has very low permeability….so I don’t need much conductivity”
- “Proppant A is ‘good enough’ at ___ conditions…….”

However, the big issue is whether the Fracture Conductivity is correctly estimated at realistic (downhole) conditions.
How is Conductivity Measured?

ISO 13503-5 Conductivity Test

- Ohio Sandstone
- 2 lb/ft\(^2\) Proppant Loading
- Stress maintained for 50 hours
- 150 or 250° F
- Extremely low water (2% KCl) velocity (2 ml/min)

Reference: API RP 19C
Pro’s & Con’s of Conductivity Testing

Accounts for:
- Proppant Size
- Proppant Strength & Crush “Profile”
- “Wet” system
- Some temperature effects
- Some embedment

Does NOT Account for:
- Non-Darcy Flow
- Multiphase Flow
- Reduced Proppant Concentration
- Gel Damage
- Fines Migration/Cyclic Stress
- Others

Reference: ISO 13503-5
Problem

To obtain a realistic proppant conductivity for design, the API/ISO test results must be reduced to account for:

1. Non-Darcy Flow
2. Multiphase Flow
3. Reduced Proppant Concentration
4. Gel Damage
5. Fines Migration / Cyclic Stress
6. Other
ND Flow Through a Proppant Pack

The following animation depicts the flow through an actual 16/20 Lightweight Ceramic proppant pack, 2 lb/ft² and 4000 psi stress.

ISOTest - 2 ml/min

100 bopd with 50% Sg
Or 120 MSCFD at 1500 psi BHFP

\[\Delta P/L = \frac{\mu v}{k} \]

Darcy Dominated

\[\Delta P/L = \frac{\mu v}{k} + \beta \rho v^2 \]

Inertia Dominated
Multiphase Flow

- **Relative permeability:** Proppant saturated with liquid is less conducive to flowing gas.

- **Saturation changes:** Liquid will tend to accumulate in the frac, occupying porosity that is now unavailable for gas flow.

- **Phase interaction:** The fast-moving gas “wastes” energy accelerating the droplets of liquid. But the liquid often stops at each pore throat, only to be re-accelerated. Very inefficient flow regime!
Other Conductivity Reductions

• Lower Proppant Concentrations
 – Typically <1 lb/ft²
 – Exacerbates ND/MP flow effects

• Gel Damage
 – Residual, Filter Cake, Tip Plugging

• Fines Migration
 – Fines of different proppant types
 – Each proppant type handles fines differently

• Cyclic Stress
 – Each time the bottom hole flowing pressure changes, the proppant pack rearranges and loses conductivity

• Durability
 – Fracture conductivity degrades over time
Conductivity at Realistic Conditions

At baseline conditions, the Tier 1 proppant is 4x the Tier 3, but jumps to over 15x at realistic conditions.
Impact of Realistic Conditions

At baseline conditions the Tier 1 proppant performs 4x the Tier 3.

At realistic conditions, the Tier 1 proppant performs 15x the Tier 3.

References: PredictK & SPE 106301

Conditions: YM=5e6 psi, 250°F, 1 lb/ft², 6000 psi, 500 mcf/d, 1000 psi bhfp, 50 ft H, 2 blpd
• Elevated Temperatures
 – Sand-based proppants lose conductivity at >200 F
 – Ceramic proppants unaffected by temperature
 – Eagle Ford, Haynesville, etc
Additional Conductivity Considerations in UCRs

• Elevated Temperatures
 – Impact on natural proppants at >200 F
 – Eagle Ford, Haynesville, etc

• Soft Formations
 – Increased proppant embedment
 – Many shale plays

• Flow Convergence
 – Transverse fracs in horizontal wells

Tremendous pressure drop!
=> Higher conductivity imperative
The Reality

So in reality…

- The conductivity of our fractures is *much lower* than we think
- Most hydraulic fractures are “*conductivity limited*”
- Modeling and field testing confirms that increasing the fracture conductivity will *increase production/EUR*.
 - SPE 77675 & 134330

But….

- Increasing conductivity typically increases the investment
 - It is a Cost – Benefit decision
Proppant Selection Drivers in Shale Plays

- Availability
- Fluid system
- Conductivity requirements in these formations
- Cost vs Benefit
 - Economic Conductivity™
The Proppant Conductivity Pyramid

Tier 1 - High Conductivity
High strength (minimizes crush)
Uniform size and shape (maximizes frac porosity and permeability)
Thermal resistant (durable, minimizes degradation)
Engineered, Manufactured Product

Tier 2 - Medium Conductivity
Medium strength
Irregular size and shape
Resin Coated Sand

Tier 3 - Low Conductivity
Low strength
Irregular size and shape
Naturally Occurring Product

Higher Conductivity = higher production = higher investment
Proppant Selection is a Cost-Benefit decision
ECONOMIC CONDUCTIVITY PROCESS

Predict the fracture Conductivity at Realistic Conditions

- Some sophisticated Frac Models will do this

Run sensitivities to determine optimal Conductivity

- Provides the highest return on investment

Validate with field results

- Ensure field results support the modeling
Eagle Ford Shale

- Webb County operator
- Evaluated Tier 1 vs Tier 3 proppants
- Compared to internal wells, as well as offset operators

Proppant Selection Field Example #1
Conductivity at Eagle Ford Conditions

Baseline Conductivity, mD-ft

Realistic Conductivity, mD-ft

Baseline Conductivity
Realistic Conductivity

40/80 Tier 1
40/70 Tier 2
40/70 Tier 3
Eagle Ford Production Match/Modeling

Cumulative Production vs Time

<table>
<thead>
<tr>
<th>Transverse Fractures</th>
<th>xf (ft)</th>
<th>kfwf (mD-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>113.00</td>
<td>0.16</td>
</tr>
<tr>
<td>20</td>
<td>175.00</td>
<td>0.66</td>
</tr>
<tr>
<td>20</td>
<td>250.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Tier 1: +50%
Tier 2: +100%
Tier 3:

SPE 138425
ECONOMIC CONDUCTIVITY™ - Eagle Ford Shale

Cumulative Frequency for Multiple Operator Comparison Inside Condensate Window in Webb and Dimmit County, TX
6 Month Cumulative Gas Production Equivalents, BCFE

Primarily Tier 3
Primarily Tier 1

SPE 155799
Production Impact of Conductivity

Rosetta Resources Gates Ranch
12 Month Cumulative Gas Production, MMCFE
Well Completions Between Sand and Ceramic Proppant Normalized to Number of Stages

Incremental Value - $1.5 MM (payout in 9 months)

Tier 1 Proppant
Tier 3 Proppant

12 Month Cumulative Gas Production per Stage, mmcfe/stage

Cumulative Frequency, %

SPE 155799

$75/bbl, $3.50/mcf
Haynesville Shale
- Desoto/Caddo Parish by one operator
- 55 Wells – 20 utilized Tier 1 proppant, 35 utilized Tier 2
- All drilled/completed similarly in similar time frame
Actual Production after 2.5 years

Cumulative Gas Production at Month 32

Incremental 30% production (0.5 BCF per well avg) in ~2.5 Years

$1.8 million incremental PV per well after 2.5 years, for a $250k investment

$3.50/mcf
Decline Curve Analysis Projection

Avg. Cumulative Gas Production

Cum Gas (MCF)

Months

0 24 48 72 96 120 144 168 192 216 240

Cum Gas - Premium
Cum Gas - Other
Avg. Hyper Decline - Premium
Avg. Hyper Decline - Other

(~0.5 BCF)

+35% (~1 BCF) in 20 Years

SPE 160206
Proppant Selection Field Example #3

Bakken Shale

- Mountrail County operator
- Evaluated Tier 1 vs Tier 3 proppants
- 10 well internal field trial early in development program

![Map of Trial Wells and Groupings](image)

- Tier 3 Wells
- Tier 1 Wells
Bakken Trial – Conductivity Impact

22 Month Cumulative Production per Well Average

Tier 1 Wells
Tier 3 Wells

Cumulative Production at 22 months, BOE (bbl)
Bakken Trial – Conductivity Impact

A $300k investment in conductivity, has yielded a $1.5 million increase in value per well! *Payout in ~3 months*

$75/bbl, $3.50/mcf
CONDUCTIVITY Considerations in Various Plays

• Marcellus
 – Transverse Fractures, Depth, Realistic Conductivity

• Utica
 – Transverse Fractures, Depth, Oil / Multiple Fluids (similar to EF)

• Granite Wash
 – Transverse Fractures, Depth, High Gas Rate & Realistic Conductivity

• Niobrara
 – Transverse Fractures, Oil / Multiple Fluids

• Most wells should see benefits to conductivity
 – The only question is how much, and is it economic…
Key Take Away Messaging

• The HF process provides two things – reservoir contact and conductive pathway.
 – It is the critical (only) link between the reservoir and the wellbore

• Proppant is the conductivity pathway.

• Proppant Selection cannot be made based on depth, stress, mean particle diameter or what the last engineer did.
 – It must be designed specifically to the deliverability of a given well

• Hydraulic fractures are Conductivity Limited…period.
 – The more you have, the more you make.
 – One must estimate the conductivity of the fracture at realistic conditions

• Proppant Selection is a Cost vs Benefit decision
 – You must determine the economic benefit of increasing the conductivity via frac modeling and field validation
Summary

✓ Availability (& cost) impacting proppant selection
✓ Demand outstripping supply of *quality* proppant
✓ Fluid selection and Conductivity *should* drive proppant selection
✓ Best completion practices require a realistic estimate of conductivity
✓ There is tremendous value at stake